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The problem of mathematical modeling of flows of multicomponent mixtures with phase transitions has been
considered. The free energy of a mixture is given as a functional containing squared density gradients of the
components. This permits continuous description of multiphase mixtures without discontinuities at the inter-
faces. Numerical solutions for the flows of two-phase mixtures in capillaries with different wall wettability
conditions have been obtained.

To solve many problems in chemical technology, one has to carry out mathematical modeling of the flows of
multicomponent multiphase mixtures with phase transitions and chemical reactions. In so doing, the spatial arrangement
of the phases and their characteristics are usually not known in advance; relevant information should be obtained as a
component of the complete solution of the problem. Such a formulation makes it difficult to use the classical hydro-
dynamics based on the Navier–Stokes equations. Indeed, if the interface geometry is not known in advance, then it is
also not known what viscosity values should be substituted into the Navier–Stokes equations in a given spatial domain.
Moreover, a complication in the formulation of the interface conditions exists: the Laplace formula for pressure discon-
tinuity assumes interface smoothness, which a fortiori excludes the observed phenomena of coalescence or splitting of
liquid drops or gas bubbles.

The above problems disappear if one uses the density-functional method, which allows one to describe a mul-
ticomponent multiphase mixture continuously without introducing density discontinuities and interfaces. This is
achieved by introducing into the expression for the free energy of the mixture [1] (or into the entropy expression [2])
squared density gradients of the components. As a result, the multiphase mixture dynamics is described in a unique
manner, i.e., the system of equations used has one and the same form at all points of the flow region. One specific
feature of the density-functional method is its account for the structure of the interphase region. The proposed method
was used earlier to describe the liquid flow in a capillary with surface-active walls [3], the capillary-gravity waves [4],
and the gas-condensate mixture flow in a capillary [5].

The present paper considers the employment of the density-functional method for mathematical modeling of
two-phase isothermal flows with phase transitions. For simplicity, the temperature dependence will be omitted. Recall
the salient points of the theory for the isothermal case [1]. The theory for nonisothermal flows is described in [2].

Let an M-component mixture (gas or liquid) fill the domain D with a sectionally smooth boundary ∂D corre-
sponding to the contact with a stationary phase. It is assumed that indices i, j, and k take on values 1, ..., M, corre-
sponding to the numbers of the mixture components; indices a, b, and c take on values 1, 2, and 3, denoting the
Cartesian coordinates xa. Summation is made over recurring indices. Abbreviated notations for derivatives will be used:
g,i = ∂g ⁄ ∂ni, ∂ag = ∂g ⁄ ∂xa.

The functional of the mixture free energy is given by the expression

F = ∫ 
D

ωdV + ∫ 
∂D

f∗ dA , (1)

where
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ω = f + 
1
2

 νij∂ani∂anj + ρϕ ;   f = f (ni) ;   f∗  = f∗  (ni) ;   νij = νij (nk) ;   ϕ = ϕ (xa) ;   ρ = mini .

The equilibrium states of the mixture are the critical points of functional (1) at a fixed number of particles of
the mixture components:

Ni = ∫ 
D

nidV . (2)

Calculating the variation of functional (1), we obtain the expression

δF = ∫ 
D

ΦiδnidV + ∫ 
∂D

Φi∗ δnidA , (3)

Φi = f,i + miϕ + 
1
2

 νjk,i∂anj∂ank − νij,k∂anj∂ank − νij∆nj ,

Φi∗  = f∗ ,i − νijla∂anj ,   ∆ = ∂a∂a .

Using expression (3), we can write out the equation for the nonequilibrium states with the Lagrange factors Λi:

δF − ΛiδNi = 0 ,

leading to the system of elliptic equations

Φi − Λi = 0 (4)

and boundary conditions

Φi∗  = 0 . (5)

The Lagrange factor Λi should be determined by solving problem (4), (5) for the unknown fields of compo-
nent densities ni from the additional integral conditions (2). As constitutive hydrodynamic equations for isothermal
flows, the ordinary density and pulse equations

∂tni + ∂aIia = 0 , (6)

ρ (∂tva + vb∂bva) = ∂bpab − ρ∂aϕ , (7)

where va = ρ−1miIia are taken [6]. Let us introduce the following auxiliary quantities:

Qia = Iia − niva ,   τab = pab − σab ,   σab = (ω − Φini) δab − νij∂ani∂bnj . (8)

In the hydrodynamic description, the following boundary conditions that are usual for dynamic variables are
used:

the adhesion boundary condition

va ∂D = 0 , (9)

and the nonrunning boundary condition for diffusion flows

laQia ∂D = 0 . (10)
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It is also assumed that in dynamics, as in statics, the boundary conditions (5) are fulfilled.
Determine the total energy functional of the system, including the free energy (1) and the kinetic energy of

the mixture:

E = F + 
1
2

 ∫ 
D

ρvavadV . (11)

Direct calculation of the time derivative of functional (11) in view of expression (3) and Eqs. (5)–(10) leads to the
relation

dE
dt

 = ∫ 
D

ΣdV , (12)

where

Σ = − τab∂avb + Qia∂aΦi . (13)

The hydrodynamic model should be dissipative, i.e., it is essential that the following inequality, which is an
analog of the nonnegativity condition of energy production, hold:

dE
dt

 ≤ 0 . (14)

In view of relations (12) and (13), for inequality (14) to hold, the condition

Σ ≤ 0 (15)

should be fulfilled.
Note that relations (12) and (13) allow one to interpret τab as a viscous stress tensor, since precisely this

component of the complete stress tensor pab makes a contribution to the dissipation. Accordingly, σab should be inter-
preted as a tensor of static stresses in the mixture, since it is rate-independent and is only determined by the density
distribution of the mixture components.

For the hydrodynamic problem (6)–(10), (5) to be closed, constituent relations, i.e., expressions for the quan-
tities τab and Qia are needed. These expressions should be consistent with inequality (15). Of greatest interest is the
model that is a minimum generalization of the model of a multicomponent mixture [6, 7]. For instance, for the viscous
stress tensor the linearly viscous Navier–Stokes model

τab = 

µv − 

2
3

 µs



 ∂cvcδab + µs 

∂avb + ∂bva
 , (16)

is taken. Here µv and µs are positive coefficients of the volume and shear viscosities.
For diffusion flows, relations generalizing the Fick law are taken:

Qia = − Dij∂aΦj . (17)

Here Dij is a symmetric nonnegative matrix satisfying the additional condition

Dijmj = 0 . (18)

It is reasonable to discuss the physical meaning of the static stress tensor σab. In the case of a homogeneous
mixture, it is reduced to the ordinary stress tensor in an ideal liquid

σab = − pδab ,
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where p = nif,i − f.
For a heterogeneous mixture, the tensor σab can differ from the stress tensor of an ideal liquid in the region

where the density gradients of the components reach an appreciable value. To elucidate the role of these gradients in
the stress tensor, it is convenient to consider the equilibrium two-phase state with the dependence on only one coordi-
nate x1. In this case, ni = ni(x

1) and va = 0. As x1 → %∞ the densities of the components and the stresses converge
to the densities and stresses in the phases A and B:

x
1
 → − ∞ ,   ni → niA ,   σab → − pAδab ;   x

1
 → + ∞ ,   ni → niB ,   σab → − pBδab .

As is known [1], from the thermodynamic equilibrium conditions of the state under consideration, the me-
chanical equilibrium condition ∂1σ11 = 0 follows. From this and from the foregoing, the relations

σ11 = − pA = − pB ,

σ22 = σ33 = σ11 + νij∂1ni∂1nj = − pA + νij∂1ni∂1nj

follow.
Thus, the density gradients make a contribution to the transverse components of the stress tensor. In so doing,

they are responsible for the appearance of tension in the interphase area. The integral over the longitudinal coordinate
of this distributed tension should be identified with the interphase surface tension coefficient [1]

γ = ∫ 
−∞

+∞

νij∂1ni∂1njdx
1
 . (19)

In the present paper, in terms of the density-functional theory, numerical simulation of two-phase, two-compo-
nent mixtures was performed. In so doing, for numerical calculations of two-phase media of the type "liquid–liquid"
or "gas–liquid" it is necessary to specify a concrete form of the free energy function, the values of the coefficients of
viscosity, diffusion, and surface tension at the mixture–solid phase contact, as well as the coefficients νij.

Free energy. If the deviations of the densities from certain fixed equilibrium values are small, then the free
energy of one phase (phase A) can be represented by the quadratic polynomial

fA (ni) = fA0 + fAi (ni − niA) + 2
−1

fAij (ni − niA) (nj − njA) . (20)

The coefficients fA0 and fAi do not enter into the hydrodynamics equations; they are only used to calculate the initial
undisturbed pressure and chemical potentials. These coefficients can be assumed to be equal to zero. For hydrodynamic
modeling, only the coefficients fAij are important; they are selected in accordance with the data on the bulk modulus
for the phase A:

EA = fAijniAnjA . (21)

In the case of a two-phase flow (phases A and B), the free energy f is determined by the expressions for
fA(ni), fB(ni) as follows:

f = fAfB
 ⁄ (fA + fB) . (22)

Viscosity. The values of the shear and volume viscosities for each phase are assumed to be known. The vis-
cosity values for arbitrary values of component densities are calculated by the empirical formulas that permit determin-
ing the mixture viscosity by its known values for the components (see formula (VIII-54) in [8]):
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µs = (cAµsA
1 ⁄ 3 + cBµsB

1 ⁄ 3)3 ,   µv = (cAµvA
1 ⁄ 3 + cBµvB

1 ⁄ 3)3 ;   cA = zB
 ⁄ (zA + zB) ,   cB = zA

 ⁄ (zA + zB) ;

zA = 






∑ 

i=1

2

 (ni − niA)
2







1 ⁄ 2

 ,   zB = 






∑ 

i=1

2

 (ni − niB)
2







1 ⁄ 2

 .

(23)

Diffusion. To calculate the matrix Dij, we use the condition according to which at νij = 0 from (17) the ex-
pression for the ith component flow

qia = n
−1

Qia = − n
−1

Dij 




∂κj

∂c


 n

 ∂ac − n
−1

Dij 




∂κj

∂n



 c

 ∂an

follows. Here n = ∑ 

i=1

2

ni ; c = n1
 ⁄ n; κi = f,i.

Thus, the tabulated diffusion coefficient d for component 1 in the mixture is related to the matrix Dij by the
relation

d = n
−1

D1j 




∂κj

∂c



 n

 . (24)

The diffusion coefficient d is calculated by the known values in the phases dA and dB: d = cAdA + cBdB. If the free
energy is given (see (20)–(22)), then in the case of a two-component mixture, by the coefficient d from Eq. (24) in
view of (18) the matrix Dij is calculated uniquely.

The surface tension at the mixture–solid contact is assumed to be a linear function of the component
densities:

f∗  = ξ1ini + ξ0 . (25)

The parameters ξ0 and ξ1i are calculated by the known values of the surface tension at the contact with a solid for
the phases A and B:

θA = ξ1iniA + ξ0 ,   θB = ξ1iniB + ξ0 . (26)

Fig. 1. Binodal decomposition of the mixture with homogeneous wettability
conditions on the capillary walls.
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The system of linear equations (26) always has a solution, but it is not unique. The arbitrariness in the choice of de-
pendence (25) influences the component distribution near the solid wall but does not influence the wetting angle.
Moreover, the parameter ξ0 influences neither the dynamic equations nor the boundary conditions. Therefore, it suffices
to make the parameters ξ1i consistent with the given difference

∆θ = θB − θA = ξ1i (niB − niA) ,

and assign an arbitrary value to the parameter ξ0.
The matrix of coefficient νij is assumed to be constant and proportional to the unit matrix: νij = νδij. The un-

known coefficient ν is determined from the expression for the surface tension (19) between the phases A and B for
the static solution. It should be noted that at a known coefficient γ Eq. (19) is nonlinear with respect to ν, since the
equilibrium distribution of components also depends on νij (see [4]).

The system of equations (6)–(10), (16), (17) was solved numerically by means of an explicit conservative dif-
ference scheme. In the two-dimensional formulation, the following model problems were calculated:

1) binodal decomposition of a two-component mixture in a capillary with wetted walls;
2) spinodal decomposition of a two-component mixture in a capillary whose walls contain alternating wetted

and nonwetted areas.
In both cases, for phases A and B a core with mole concentrations of the first and second components that

are close, respectively, to unity was taken. The other parameters of the phases and components were: µsA = µsB =
10−3 Pa⋅sec, µv = 10µs for the phases A and B, ρA = 1000 kg/m3, ρB = 800 kg/m3, m1 = 18 kg/kmole, and m2 =
200 kg/kmole.

Fig. 2. Spinodal decomposition of the mixture with inhomogeneous wettability
conditions on the capillary walls.
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The gray color gradations in the calculated cells presented in Figs. 1 and 2 show the concentration distribution
of one of the components present, which practically corresponds to the spatial distribution of the corresponding phase.

Problem 1. As initial conditions, a homogeneous state of a mixture (Fig. 1a) with a zero flow field is given.
The initial molar composition of the mixture is 0.7 of the first component and 0.3 of the second one. This composi-
tion corresponds to the local thermodynamic stability of the mixture (the matrix f,ij is positive definite). At the same
time, the mixture is thermodynamically unstable in the sense of finite disturbances. The mixture is in a capillary with
walls wetted by the phase B at ∆θ = −0.04 N/m, γ = 0.24 N/m. The calculated field consists of 320 × 32 square cells
with dimensions of 5⋅10−4 m. Figure 1b–e shows the process of the appearance and growth of the wetting phase as a
result of the interaction between the mixture and the capillary walls.

Problem 2. The mixture is in a capillary with a variable surface tension on the walls (the scheme of the dis-
tribution of wettable (w) and nonwettable (nw) areas of the boundary is given in Fig. 3). In this case, ∆θ = −0.01
N/m for wettable and ∆θ = 0.01 N/m for nonwettable areas, γ = 0.24 N/m. As initial conditions, a homogeneous state
of a mixture (Fig. 2a) with a zero flow field is given. The initial molar composition of the mixture is 0.5 of the first
component and 0.5 of the second one. This composition corresponds to the locally thermodynamically unstable mixture
(the matrix f,ij has a negative eigenvalue). The calculated field consists of 128 × 32 square cells with dimensions of
5⋅10−4 m. Figure 2b–e shows the process of mixture decomposition into phases (spinodal decomposition), which, as a
result of the local instability, involves the entire volume (see Fig. 2b) as opposed to the case of binodal decomposi-
tion, where the growth of a new phase started at the corner points (see Fig. 1b). At later stages of spinodal decompo-
sition the interrelated hydrodynamic and diffusion processes lead to a spatial separation (see Fig. 2c–e).

Thus, it has been shown that for thermodynamically unstable mixtures the density-functional method permits
effective description of the interrelated processes of viscous flow, diffusion, phase transitions, and surface tension. This
makes it possible to use this method in modeling a wide class of processes of chemical technology.

Visualization of the results of the calculations (Figs. 1 and 2) was carried out by means of the VR-Geo pro-
gram (limited company "Service-Nafta").

NOTATION

c, concentration of component 1; cA, cB, auxiliary variables; D, spatial domain; d, diffusion coefficient,
m2/sec; ∂D, spatial domain boundary; Dij, matrix of diffusion coefficients, sec⋅mole2/(m3⋅kg); dA, diffusion coefficient
in phase A, m2/sec; dB, diffusion coefficient in phase B, m2/sec; dA, surface element, m2; dV, volume element, m3; E,
total energy functional, J; EA, modulus of dilatation of phase A, Pa; F, free energy functional, J; f, free energy of a
homogeneous mixture per unit volume, Pa; f∗ , free energy of the mixture per unit surface, Pa⋅m; fA, free energy of
phase A, Pa; fB, free energy of phase B, Pa; fA0, coefficient at the zero degree of the free energy quadratic polynomial
of  phase A, Pa; fAi, coefficient at the first degree of the free energy quadratic polynomial of phase A,
kg⋅m2/(sec⋅mole); fAij, coefficient at the second degree of the free energy quadratic polynomial of phase A,
kg⋅m2/(sec⋅mole); g, arbitrary auxiliary function; Iia, flow vector of the ith component, mole/(sec⋅m2); la, internal nor-
mal to the surface; M, number of mixture components; mi, molar mass of the ith component, kg/mole; Ni, number of
particles of the ith component of the mixture; n, total molar density of the mixture, mole/m3; ni, molar density of the
ith component, mole/m3; pA, phase A pressure, Pa; pB, phase B pressure, Pa; pab, stress tensor in the mixture, Pa;
Qia, diffusion flow of the ith component, mole/(sec⋅m2); qia, flow of the ith component, m/sec; va, mass-mean flow

Fig. 3. Scheme of the distribution of wettable and nonwettable areas at the
capillary boundaries.
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rate, m/sec; t, time, sec; xa, Cartesian coordinate, m; zA, zB, auxiliary variables, mole, m3; γ, interphase surface tension
coefficient, N/m; δab, unit matrix; ∆θ, surface tension difference between phases A and B, Pa⋅m; θA, surface tension
at the phase-A–solid contact, Pa⋅m; θB, surface tension at the phase-B–solid contact, Pa⋅m; κi, chemical potential of the
ith component, kg⋅m2/(sec⋅mole); Λi, Lagrange factors, kg⋅m2/(sec⋅mole); µv, volume coefficient of viscosity, Pa⋅sec;
µvA, volume coefficient of viscosity of phase A, Pa⋅sec; µvB, volume coefficient of viscosity of phase B, Pa⋅sec; µs,
shear-viscosity coefficient, Pa⋅sec; µsA, shear-viscosity coefficient of phase A, Pa⋅sec; µsB, shear-viscosity coefficient of
phase B, Pa⋅sec; νij, coefficients of the positive symmetric matrix, kg⋅m7/(sec2⋅mole2); ξ0, auxiliary parameter, Pa⋅m;
ξ1i, auxiliary parameters, kg⋅m3/(sec⋅mole); p, mass density of the mixture, kg/m3; ρA, mass density of phase A,
kg/m3; ρB, mass density of phase B, kg/m3; Σ, auxiliary function, kg/(sec2⋅m); σab, tensor of static stresses in the mix-
ture, Pa; τab, tensor of viscous stresses in the mixture, Pa; Φi, generalized chemical potential of the ith component of
the mixture in the bulk, kg⋅m2/(sec⋅mole); Φi

∗ , generalized chemical potential of the ith component of the mixture on
the surface; kg⋅m3/(sec⋅mole); ϕ, gravitational potential, m2/sec2; ω, auxiliary function, Pa; a, b, c, indices of Cartesian
coordinates; i, j, k, indices of mixture components.
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